United States Patent

US009459861B1

(12) (10) Patent No.: US 9,459,861 B1
Rogers et al. 45) Date of Patent: Oct. 4, 2016
(54) SYSTEMS AND METHODS FOR DETECTING 6,381,739 Bl 4/2002 Breternitz, Jr. et al.
COPIED COMPUTER CODE USING 6,591,415 Bl 7/2003 Torrubia-Saez
6,668,325 Bl 12/2003 Collberg et al.
FINGERPRINTS 7,424,131 B2 9/2008 Alattar et al.
. . 7,581,092 B2 8/2009 Shear et al.
(71) Applicant: Terbium Labs, Inc., Baltimore, MD 7,590,853 Bl 9/2009 Shear et al.
us) 7,685,590 B2 3/2010 Venkatesan et al.
7,734,553 B2 6/2010 Shear et al.
(72) Inventors: Daniel J. Rogers, Baltimore, MD (US); 7,761,916 B2 72010 Shear et al.
. . k 7,770,016 B2 8/2010 Horne et al.
Michael Moore, Columbia, MD (US); 7,904,707 B2 3/2011 Shear et al.
Dionysus Blazakis, Parkville, MD (US) 7,025,808 B2 4/2011 Shear et al.
8,056,138 B2 11/2011 Jin et al.
(73) Assignee: TERBIUM LABS, INC., Baltimore, .
MD (US) (Continued)
. . Lo . FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 CN 102012862 4/2011
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 15/079,719 OTHER PUBLICATIONS
led: Arruda, P, et al., “A Framework for Detecting Code Piracy Using
(22) Filed: Mar. 24, 2016 Class Structure”; Proceedings 22nd International Conference on
Related U.S. Application Data Software Engineering & Knowledge Engineering (SEKE); (Jul.
2010); pp. 559-564.
(60) Provisional application No. 62/138,543, filed on Mar. (Continued)
26, 2015.
(51) Int.CL Primary Examiner — Peter Shaw
GO6F 7/04 (2006.01) (74) Attorney, Agent, or Firm — Patent Portfolio Builders
GO6F 9/44 (2006.01) PLLC
(52) US. CL
CPC oo GOGF 8/751 (2013.01) (57) ABSTRACT
(58) Field of Classification Search Systems and methods of detecting copying of computer code
CPC GOGF 8/751 or portions of computer code involve generating unique
USPC et 726/32 fingerprints from compiled computer binaries. The unique
See application file for complete search history. fingerprints are simplified representations of functions in the
. compiled computer binaries and are compared with each
(56) References Cited other to identify similarities between functions in the respec-

U.S. PATENT DOCUMENTS

5,559,884 A 9/1996 Davidson et al.
6,000,030 A 12/1999 Steinberg et al.
6,108,420 A 8/2000 Larose et al.

tive compiled computer binaries. Copying can be detected
when there are sufficient similarities between fingerprints of
two functions.

15 Claims, 13 Drawing Sheets

305 ——]

Receive Binary |
3

210 Measure Bulk File Characteristics and
Meta-Data

Disassemble Binary and Generate Gall
a5 Graph for Binary and Control Flow Graph

for Each Function

Select First Function ‘

l_J_l

Caloulate Function Out-
Degree Using Function
Cafl Graph

3285 —1

Caloulate Leading
Eigenvector of Adjaccncy
Wiatrix [~ a0

i

i

Caiculate Total Number of
Blocks Within Selected
Function's Control Flow

Graph

330 —]

Caloutate Markov Chain 1~ ¢

i

i

Caiculate Total Number of
Edges Within Selected
Function's Control Flow

Graph

335 —f

Calculate Gount Block
Size, n-Degree. and Out-

Degree Along Chain 350

355
‘Any Function
Remaining?

365

Select Next
Function

US 9,459,861 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,140,850 B2 3/2012 Horne et al.
8,214,497 B2 7/2012 Alperovitch et al.
8,365,277 B2 1/2013 Kim et al.
8,370,634 B2 2/2013 Horne et al.
8,495,755 B2 7/2013 Jin et al.
8,533,848 B2 9/2013 Jin et al.
8,533,851 B2 9/2013 Ginter et al.
8,566,960 B2 10/2013 Richardson
8,661,559 B2 2/2014 Wilson et al.
8,997,256 Bl 3/2015 Rogers et al.
9,218,466 B2 12/2015 Rogers et al.

2004/0143713 Al* 7/2004 Niles ... GO6F 11/1453

711/162

2005/0028002 Al 2/2005 Christodorescu et al.

2006/0230453 Al 10/2006 Flynn et al.

2007/0074287 Al 3/2007 Abad

2007/0239993 Al 10/2007 Sokolsky et al.

2008/0222414 Al* 9/2008 Wangc.c..... HO4L 9/0643
713/161

2008/0288653 Al 11/2008 Adams

2009/0172404 Al 7/2009 Kim et al.

2009/0328185 Al 12/2009 Berg et al.

2010/0011441 Al 1/2010 Christodorescu et al.

2011/0214188 Al 9/2011 Collberg et al.

2011/0246968 A1 10/2011 Zhang et al.

2012/0254830 Al 10/2012 Conrad et al.

2012/0317421 Al 12/2012 Gounares

2013/0036129 Al 2/2013 Havel et al.

2013/0166600 Al 6/2013 Snyder, II et al.

2013/0311496 A1* 11/2013 Fedorenko GO6F 8/71
707/758

2014/0068768 Al
2014/0090067 Al
2014/0223565 Al
2015/0180883 Al
2015/0186648 Al

3/2014 Lospinuso et al.
3/2014 Tripp

8/2014 Cohen

6/2015 Aktas et al.
7/2015 Lakhotia

OTHER PUBLICATIONS

Bilar, D., “Callgraph properties of executables”; Al Communica-
tions 20.4; (Dec. 2007); pp. 231-243.

Bruschi, D, et al., “Using Code Normalization for Fighting Self-
Mutating Malware”; Proceedings of the International Symposium
on Secure Software Engineering; (Mar. 2006); pp. 1-8.

Cesare, S., et al.;,“Classification of Malware Using Structured
Control Flow”; Proceedings of the Eighth Australasian Symposium
on Parallel and Distributed Computing; vol. 107; Australian Com-
puter Society, Inc. (Jan. 2010); pp. 51-70.

Collberg, C., et al., “Software Watermarking: Models and Dynamic
Embeddings”; Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM; (Jan.
1999); pp. 311-324.

Commission on the Theft of American Intellectual Property, “The IP
Commission Report: The Report of the Theft of American Intellec-
tual Property”; (May 2013); 100 pages.

Dullien, T., et al., “Graph-based comparison of Executable Objects
(English Version)”; SSTIC 5 (Jun. 2005); pp. 1-3.

Flake, H., “Structural comparison of executable objects”; In Flegel,
U., and Michael Maier (eds.). “Detection of Intrusions and Malware
& Vulnerability Assessment: GI Special Interest SIDAR Work-
shop”; DIMVA; (Jul. 2004); pp. 161-173.

Lim, H. et al., “A method for detecting the theft of Java programs
through analysis of the control flow information”; Information and
Software Technology 51.9 (Sep. 2009); pp. 1338-1350.
Mandiant.com, “APT1: Exposing One of China’s Cyber Espionage
Units”; (Feb. 19, 2013); 76 pages.

McAfee Labs and McAfee Foundstone Professional Services, “Pro-
tecting Your Critical Assets: Lessons Learned from Operation
Aurora” (2010); pp. 1-15.

Rajaraman, A. et al., “Mining of Massive Datasets”; Cambridge
University Press, Dec. 30, 2011; 453 pages.

Robles-Kelly, A., et al., “Graph-Edit Distance from Spectral Seria-
tion”; IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27.3 (Mar. 2005); pp. 365-378.

Verizon,“Verizon 2012 Data Breach Investigations Report;” (Mar.
2012); 80 pages.

Zaremski, A. M., “Signature and Specification Matching”; Diss.
Massachusetts Institute of Technology; (Jan. 1996); 150 pages.
Jiaming, F. et al., “Comparison of Executable Objects Based on
Singatures and Properties,” Journal of Computer Research and
Development; (Jun. 2009); pp. 1868-1876, vol. 46, Issue 11, China
Academic Journal Electronic Publishing House.

Xie, X. et al., “A Static Software Birthmark Based on Use-Define
Chains for Detecting the Theft of Java Programs,” Security and
Cryptography; Zhengzhou Information Science and Technology
Institute; (Jul. 2011); pp. 231-237; Henan, China.

Carrera, et al., “Digital Genome Mapping—Advanced Binary Mal-
ware Analysis”; Virus Bulletin Conference; :Sep. 2004); pp. 1-11.
Page, L., “The PageRank Citation Ranking: Bringing Order to the
Web”; Stanford Info Lab, Technical Report; (Jan. 29, 1998); pp.
1-17.

Needleman, S. B. et al,, “A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Pro-
teins”; Department of Biochemistry, Northwestern University and
Nuclear Medicine Service, V.A. Research Hospital; J. Mol. Biol.,
vol. 48; (Jul. 21, 1969); pp. 443-453; Chicago, IL.

International Search Report and Written Opinion of the Interna-
tional Searching Authority in related International Application No.
PCT/US15/22650 mailed Jul. 7, 2015.

Myers, G. et al., “Detecting Software Theft via Whole Program Path
Birthmarks”, Information Security, Springer-Verlag Berlin
Heidelberg, Sep. 2004, pp. 404-415.

International Search Report mailed Aug. 8, 2016 in related Inter-
national Application No. PCT/US2016/023940.

Written Opinion mailed Aug. 8, 2016 in related International
Application No. PCT/US2016/023940.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 13 US 9,459,861 B1

Fingerprint

Generation —___
(Fig. 3 or 8) 300 or 800

Y

Fingerprint
Matching
(Figs. 7A, 7Bor | 7000r 1000

10A, 10B)

Fig. 1

U.S. Patent

Oct. 4, 2016 Sheet 2 of 13 US 9,459,861 B1
Input Output
215 220
R Processor
205
Memory
210
200

Fig. 2

U.S. Patent

Oct. 4, 2016 Sheet 3 of 13

US 9,459,861 B1

305 — Receive Binary
v

310 —o Measure Bulk File Characteristics and

Meta-Data
)
Disassemble Binary and Generate Call

315 Vs Graph for B;r;?réaacngCuzg’:irg;Flow Graph
v

320 —~ Select First Function

<&
<*

Y

A

Calculate Function Out- Calculate Leading
325 —{ Degree Using Function Eigenvector of Adjacency ~_
Call Graph Matrix 340
Calculate Total Number of
Blocks Within Selected .
330 Function’s Control Flow Calculate Markov Chain ~_ 345
Graph
Calculate Total Number of
Edges Within Selected ‘Calcuiate Count Block
335 — - Size, In-Degree, and Out- N
Function’s Control Fiow . 350
Degree Along Chain
Graph
I |
355
Any Function Select Next
Remaining? Function
/ Generate Fingerprint of 360
365 Binary

Fig. 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 13 US 9,459,861 B1

/\

415 — Function 410 — Function
420 —] Function 425 — Function Function ~_ 430
f Function 440 ~ Function
435

Fig. 4

U.S. Patent Oct. 4, 2016 Sheet 5 of 13 US 9,459,861 B1

- i
ey i
et e

525

N
WHNE

B R
e, 3

U.S. Patent

Oct. 4, 2016 Sheet 6 of 13

US 9,459,861 B1

Bulk File Characteristics and Meta-Data
610

Function Coordinates
620

fun_1: (out-deg, blks, edges)
fun_2: (out-deg, blks, edges)
fun_3: (out-deg, blks, edges)

e v = e v e = M e e e v o M e v e e mm mm e A e o e = w e e v Mmoo e e

Unique Spectra
630

fun_3:
Block Size;

fun_2:

Block Size;

fun_1:
Block Size;
In-Degree;
Out-Degree

U.S. Patent Oct. 4, 2016 Sheet 7 of 13

US 9,459,861 B1

Receive Two Binary Fingerprints

v

Compare Bulk File Characteristics and Meta-data

v

Compute Distances Between Each Pair of Possible
Functions Using Fingerprint Function Coordinates

v

Sort Distances of Function

v

Discard Function Pairs with Distances Greater than
Threshold

v

Generate Reduced List of Function Pairs for Further
Comparison

v

Select Function Pair from Reduced List

A

v

Calculate Cross-Correlation of Block-Size Spectra

v

Calculate Cross-Correlation of In-Degree Spectra

v

Calculate Cross-Correlation of Out-Degree Spectra

Fig. 7A

U.S. Patent Oct. 4, 2016 Sheet 8 of 13 US 9,459,861 B1

760 —] Calculate Block-Size Spectra Ratio
A 4

765 Ve Calculate In-Degree Spectra Ratio
Y

770 — Calculate Out-Degree Spectra Ratio
A4

Select Maximum Ratio of Block Size, In-Degree, and
775] Qut-Degree Spectra Ratios

b4

Generate Comparison Score Based on Selected
780 — | Maximum Ratio

A4

Identify Infringement Based on Generated
785 — | Comparison Score

A

Notify Owner of One of the Complied Computer
790 — | Binaries of Potential Infringement

100 Fig. 7B

U.S. Patent Oct. 4, 2016 Sheet 9 of 13

Receive Binary

v

Disassemble Binary and Generate Control Flow
Graph for Each Function in Binary

¥

Select First Function

v

Reverse All Edges and Run Block Rank on Control

US 9,459,861 B1

[00]
(]
(o]

[3

Flow Graph

v

Begin at Function Start

¥
Identify Blocks Connected with Function Start in
Controf Flow Graph and Associated Block Rank
Score

L 2

Select Next Connected Block in Control Flow
Graph Having Highest Block Rank Score

v

For Selected Block Save in an Ordered List the
Number of Instructions in the Block, the In-Degree
of the Block in the Control Flow Graph, and the
QOut-Degree of the Block in the Control Flow Graph

Any Out Paths from
Selected Block?

Generate Fingerprint of Function by Storing
Ordered List of 3-Tuples for Each Function along
with Control Flow Graph Block Count, Control
Flow Graph Edge Count, and Function Call Count

Any Function(s)
Remaining?

Select Next
Function

No

Save Fingerprints of Each Function in an
Association with the Received Binary

Py
860

U.S. Patent Oct. 4, 2016 Sheet 10 of 13 US 9,459,861 B1

Block
Rank
Score: 7
902
{
Block Block
Rank N Rank
Score: 4 Score: 3
904 206
T A
| l | l
Block Block Block Block Block
Rank Rank Rank Rank Rank
Score: 1 Score: 1 Score: 1 Score: 2 Score: 2
908 910 912 914 916

Fig. 9

U.S. Patent Oct. 4, 2016 Sheet 11 of 13

1002

Receive Query Function

v

US 9,459,861 B1

1004 ~— |

Fingerprint Query Function

v

Compute Neighborhood Size
Euclidean_distance([0,0,0], coordinate_triple of
query function)*0.20

v

Select Fingerprint of First Function in
Neighborhood

~

Initiate Comparison of 3-Tuples of Query
Fingerprint with Selected Neighborhood

Fingerprint
¥

1012 —

Independently Normalize Each Dimension of
Query Fingerprint and Selected Neighborhood
Fingerprint by Dividing Distance from Mean for

Each Dimension by Standard Deviation

v

Compute Similarity Score Between Query
Fingerprint and Selected Neighborhood
Fingerprint

v

Add Similarity Score to Similarity Ranking List
Ordered from Closest to Furthest Score

Any Neighborhood
Function Remaining?

1038

Identify Copied Code as Any Neighborhood
Function Having a Simitarity Score Greater than or
Equal to Threshold Similarity Score

A

Select Next
Neighborhood [—
Function

//

1036

Fig. 10A

U.S. Patent Oct. 4, 2016 Sheet 12 of 13

Generate Two-Dimensional Array A; x B; of All
Possible Pair Combinations of 3-tuples Between
Query Fingerprint and Selected Neighborhood
Fingerprint

+

1018 e

Initialize i = y and j = z, Where y and z are Indices
of Last Cell in Array

¥

Add to Value of Cell Possessing Indices i=y-1
and/or j=z-1, Maximum Value Among All Cells
Lying on Pathway to Cell

US 9,459,861 B1

Fy

1024

1022

1026 = Last Cell of All Rows? :

Last Cell of Row?

Yes

Yes

1030 —]

Select Pathway Having Largest Sum of Assigned
Cell Value, Less Any Penalty, as Maximum Match
Pathway

Increment j

Increment
Reset

//

1028

Fig. 10B

US 9,459,861 B1

Sheet 13 of 13

Oct. 4, 2016

U.S. Patent

Fig. 11A

Fig. 11C

0

US 9,459,861 B1

1
SYSTEMS AND METHODS FOR DETECTING
COPIED COMPUTER CODE USING
FINGERPRINTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Provisional Appli-
cation 62/138,543, filed Mar. 26, 2015, the entire disclosure
of which is herein expressly incorporated by reference. This
application is related to Provisional Application 61/973,125,
filed Mar. 31, 2014, U.S. Non-Provisional application Ser.
No. 14/314,307, filed Jun. 25, 2014, and U.S. Non-Provi-
sional application Ser. No. 14/621,554, filed Feb. 13, 2015,
the entire disclosures of which are herein expressly incor-
porated by reference.

BACKGROUND OF THE INVENTION

Software theft has been, and continues to be, pervasive.
Individuals and companies typically try various techniques
to combat software theft, including requiring a unique
software key to install software, requiring online activation
of software, requiring an active online connection to use
software, encryption of software, and the like. Although
these techniques typically prevent casual users from install-
ing unauthorized copies, the techniques can typically be
overcome by sophisticated users.

Another way to combat software theft is to try to identify
the source of the stolen software using watermarks. This
involves applying unique watermarks to each copy of the
software so that when a stolen piece of software is found, the
watermark in the stolen software will corresponding to one
of the unique watermarks in the authorized software. This
requires modification of the computer code, which is unde-
sirable. Further, this technique can be overcome by remov-
ing the watermark from the stolen software or removing the
watermark from the authorized software so that all further
copies do not contain the unique watermark.

SUMMARY OF THE INVENTION

In addition to the issues identified above with the known
techniques for combating software theft, these techniques
focus on the software as a whole, and thus cannot identify
when only portions of the underlying code are stolen. For
example, if a watermark were applied to the software, the
watermark would not appear in the stolen software if less
than the entire code were used. Similarly, if software theft
were identified by comparing hash values generated from
the authorized and stolen software, the hash values would
not match when less than the entire underlying code is
present in the stolen software. Thus, a thief could simply
modify some portion of the code to defeat these techniques.
Further, it is often the case that only a portion of the
underlying code is truly unique and provides the overall
value to the software, and accordingly a thief may only want
to use this unique portion in different software. For example,
a thief could copy one or several functions from someone
else’s software and incorporate the function(s) in his/her
own software. Because these functions may comprise only
a small part of the overall code in the thief’s software, simple
watermarking and hash value techniques across an entire set
of code would not identify this theft of several functions
from someone else’s code.

Exemplary embodiments of the present invention are
directed to techniques for combating software theft by

10

15

20

25

30

35

40

45

50

55

60

65

2

identifying whether at least a portion of one piece of
software appears in another piece of software. Thus, the
present invention allows the identification of whether por-
tions of one piece of software appear in a different piece of
software, even when the overall operation of the two pieces
of software is different. The inventive technique is particu-
larly useful because it operates using compiled computer
binaries, and thus does not require access to the underlying
source code.

In accordance with exemplary embodiments of the pres-
ent invention, fingerprints are generated for functions in
compiled computer binaries. The fingerprint generation
involves generating a block rank score for each block of a
function and then generating order list of blocks in a path
through the function using the block rank scores. The
comparison of fingerprints involves the use of the ordered
list of blocks for each corresponding function to identify
similarities between the fingerprints.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of the overall process of
exemplary embodiments of the present invention;

FIG. 2 is a block diagram of an exemplary system for
generating and matching fingerprints in accordance with the
present invention;

FIG. 3 is a flow diagram of an exemplary process for
generating a fingerprint using binary code in accordance
with the present invention;

FIG. 4 is a block diagram of an exemplary call graph in
accordance with the present invention;

FIG. 5 is a block diagram of an exemplary control flow
graph in accordance with the present invention;

FIG. 6 is a block diagram of an exemplary fingerprint in
accordance with the present invention;

FIGS. 7A and 7B are flow diagrams of an exemplary
process for matching fingerprints in accordance with the
present invention;

FIG. 8 is a flow diagram of an exemplary fingerprinting
technique in accordance with another embodiment of the
present invention;

FIG. 9 is a block diagram illustrating application of block
ranking to an exemplary function in accordance with the
present invention;

FIGS. 10A and 10B are flow diagrams of an exemplary
process for matching fingerprints in accordance with another
embodiment of the present invention; and

FIGS. 11A-11C are block diagrams illustrating exemplary
arrays used for calculating fingerprint similarity scores in
accordance with the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of the overall process of
exemplary embodiments of the present invention. As illus-
trated in FIG. 1, the overall process involves generating a
fingerprint from compiled computer binaries (step 300 or
800) and matching the generated fingerprints to determine
whether there is sufficient similarity (step 700 or 1000). It
should be recognized that fingerprint generation from com-
piled computer binaries that are later compared for matching
can be performed at approximately the same time or can be
performed at different times. For example, a fingerprint of a
first compiled computer binary can be generated for pur-
poses of identifying theft of the underlying code. Other
compiled computer binaries can then be collected over a
period of time, and then fingerprints can be generated using

US 9,459,861 B1

3

the other compiled computer binaries for comparison with
the first compiled computer binaries. These other compiled
computer binaries can be obtained in any manner, such as,
for example, using a web spider that crawls across the
Internet and collects compiled computer binaries. The other
compiled computer binaries can also be manually input. For
example, the owner of a first compiled computer binary may
suspect that a second compiled computer binary contains
code stolen from the first compiled computer binary. In this
case, the fingerprints can be generated from the first and
second compiled computer binaries at approximately the
same time and then compared using the inventive fingerprint
matching technique.

FIG. 2 is a block diagram of an exemplary system for
generating and matching fingerprints in accordance with the
present invention. The system 200 can comprise one or more
computers that include a processor 205 coupled to memory
210, input 215, and output 220. The disclosed processes can
be performed by processor 205 executing computer code
stored in memory 210. Processor 205 can be any type of
processor, including a microprocessor, field programmable
gate array (FPGA), and/or an application specific integrated
circuit (ASIC). Memory 210 can be any type of non-
transitory memory. In addition to storing computer code for
executing the processes described herein, memory 210 can
also store the generated fingerprints. Alternatively or addi-
tionally, a separate storage medium can store the generated
fingerprints. For example, the computer binaries, finger-
prints, and comparison scores can be stored in a distributed
file system and non-relational, distributed database. Input
215 provides mechanisms for controlling the disclosed pro-
cesses, including, for example, a keyboard, mouse, trackball,
trackpad, touchscreen, etc. Further, input 215 can include a
connection to an external storage device for providing
compiled computer binaries, such as an external hard drive
or flash storage memory, as well as a network connection.
Output 220 can include a display, printer, and/or the like.
Additionally, output 220 can include a network connection
for notifying an owner of a compiled computer binary of any
identified potential infringement, such as by electronic mail,
posting on a website or webpage, a text message, and/or the
like.

FIG. 3 is a flow diagram of an exemplary process for
generating a fingerprint using binary code in accordance
with the present invention. This process is performed using
the system of FIG. 2. Initially, processor 205 receives a
compiled computer binary (step 305) via input 215 and/or
memory 210 and measures bulk file characteristics and
meta-data (step 310). Next, processor 205 disassembles the
compiled computer binary, generates a call graph from the
disassembled binary, and generates control flow graphs for
each function in the call graph (step 315). Once the compiled
computer binary is disassembled, the remainder of the
processing can be performed independent of the particular
language, operating system, or architecture that the code was
written for.

FIG. 4 is a block diagram of an exemplary call graph in
accordance with the present invention. As will be appreci-
ated by those skilled in the art, a call graph describes the
relationship between various functions in a compiled binary.
Thus, in FIG. 4, a main function 405 (also commonly
referred to as a routine) has calls to sub-functions 410 and
415 (also commonly referred to as sub-routines). In turn,
function 415 has calls to functions 420, 425, and 430, and
function 425 has calls to functions 435 and 440. Those
skilled in the art will recognize that in a call graph each
function is commonly referred to as a node and the connec-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions between functions are commonly referred to as edges.
It will be recognized that the call graph of FIG. 4 is a highly
simplified graph and that compiled computer binaries typi-
cally will be disassembled into much more extensive call
graphs.

FIG. 5 is a block diagram of an exemplary control flow
graph in accordance with the present invention. Those
skilled in the art will recognize that a control flow graph for
a function describes all possible paths that may be traversed
during execution of the particular function. Examples of
paths that may be executed in the function of FIG. 5 include
blocks 505, 515, 520, 525, 530, 535, and 545; 505, 515, 520,
525, 530, 535, 540, 550, 560, and 565; 505, 510, 515, 550,
560, and 565; and 505, 510, 515, 550, 555, and 565. In
addition to these paths, any path with connections illustrated
in FIG. 5 can be traversed during the execution of the
function. Further, it should be recognized that this is merely
an exemplary function and that other functions are within
the scope of the invention.

Returning to FIG. 3, after processor 205 generates the
control flow graphs for each function (step 315), processor
205 selects one of the functions for processing (step 320). As
illustrated, this processing is performed along two parallel
paths. It should be recognized, however, that these two paths
can be performed serially, if desired. It should also be
recognized that this parallel processing does not require all
of the control flow graphs to be generated, and accordingly
this parallel processing can be performed as control flow
graphs are generated. Turning to the path on the left-hand
side of FIG. 3, first processor 205 calculates the function
out-degree using the call graph for the particular function
(step 325). The function out-degree represents the number of
paths or calls from a particular function to other functions in
the call graph. Next processor 205 calculates the total
number of blocks within the selected function’s control flow
graph (step 330), and finally processor 205 calculates the
total number of edges within the selected function’s control
flow graph (step 335). The edges in the control flow graph
are the connections between the different blocks within this
graph.

Turning now to the path on the right-hand side of FIG. 3,
first processor 205 calculates the leading FEigenvector of the
adjacency matrix (step 340). The adjacency matrix is com-
prised of the function coordinates 620 (described below in
connection with FIG. 6). Next, processor 205 calculates the
Markov chain (step 345). The Markov chain is calculated
starting with the leading Eigenvector and then appending
connected nodes corresponding with successively smaller
elements of the leading Eigenvector. The Markov chain
provides a good low-rank approximation, or serialization, of
the control flow graph that is relatively unique and particu-
larly well-suited for further statistical analysis of the control
flow graph.

Processor 205 then calculates count block size, in-degree,
and out-degree along the Markov chain (step 350). These
three spectra are relatively unique among and within com-
piled computer binaries. An example of the count block size,
in-degree, and out-degree will now be described in connec-
tion with FIG. 5, and assuming a chain between the blocks
as follows: 505=>515=>550=>560=>565. In this example
the block count spectrum would be [12, 2, 3, 3, 9] because
block 505 has 12 instructions, block 515 has two instruc-
tions, blocks 550 and 560 each have three instructions, and
block 565 has nine instructions. The in-degree spectrum
would be [0, 2, 3, 1, 2] because block 505 does not have any
incoming edges, block 515 has two incoming edges, block
550 has three incoming edges, block 560 has one incoming

US 9,459,861 B1

5

edge, and block 565 has two incoming edges. The out-
degree spectrum would be [2, 2, 2, 1, 1] because blocks 505,
515, and 550 each have two outgoing edges and blocks 560
and 565 each have two outgoing edges. The values for each
spectra and ordering of values provides a unique signature
for a particular control flow graph that can be used to
identify other functions that have the same or similar unique
signatures.

After the processing of the two parallel paths is complete,
processor 205 determines whether there are any further
functions to process (step 355). If there are (“Yes” path out
of decision step 355), then the next function is selected (step
360) and the parallel processing is repeated. If not (“No”
path out of decision step 355), then processor 205 generates
the fingerprint of the binary using the calculated information
(step 365).

FIG. 6 is a block diagram of an exemplary fingerprint in
accordance with the present invention. As illustrated in FIG.
6, the fingerprint includes bulk file characteristics and meta-
data 610, function coordinates 620, and unique spectra 630.
The function coordinates 620 includes, for each function, the
calculated out-degree, number of blocks, and number of
edges. The unique spectra includes, for each function, the
calculated block size, in-degree, and out-degree. These
fingerprints are then used for comparison against finger-
prints of other compiled computer binaries as described
below in connection with FIGS. 7A and 7B.

FIGS. 7A and 7B are flow diagrams of an exemplary
process for matching fingerprints in accordance with the
present invention. This process is performed using the
system of FIG. 2. Initially, processor 205 receives two
fingerprints of compiled computer binaries via input 215
and/or memory 210 (step 705) and compares their bulk file
characteristic and meta-data (step 710). The bulk file char-
acteristic can include measuring the Jaccard Similarity,
which is a numerical score representing the amount of
overlap between strings contained in both fingerprints, and
is typically between 0 and 1.

Next, processor 205 computes distances between each
pair of possible functions of the two fingerprints using the
function coordinates 620 of the respective fingerprints (step
720). Processor 205 then sorts the distances (step 720) and
discards function pairs having distances greater than a
threshold distance (step 725). This step reduces the process-
ing load because only the most-likely related functions will
have distances below the threshold. Thus, the particular
threshold value can be selected depending upon the avail-
able processing power of the computer and the desired
run-time of the fingerprint comparison process. Further-
more, those skilled in the art will recognize that above a
certain distance it is highly unlikely that functions will be
related, and thus at least some thresholding should be
performed to reduce unnecessary processing.

Processor 205 then generates a list using the remaining
function pairs (step 730), and one of the function pairs from
the reduced list is selected for further processing of the
unique spectra 630 (step 735). Specifically, processor 205
calculates a cross-correlation for the block-size spectra (step
740), the in-degree spectra (step 745), and the out-degree
spectra (step 750). It will be recognized that the cross-
correlation is a measure of how closely the spectra of the two
fingerprints are related. Next processor 205 determines
whether any function pairs remain to be processed (step
755). If so (“Yes path out of decision step 755), then the next
function pair is selected from the reduced list (step 735) and
the cross-correlation of the unique spectra are calculated
(steps 740-750). The cross-correlation can produce a corre-

10

15

20

25

30

35

40

45

50

55

60

65

6

lation coefficient indicating the degree of similarity or
correlation. For example, a coefficient of -1 indicates com-
plete anti-correlation and 1 indicates complete correlation
(i.e., the two fingerprints have the same control flow graph).

If there are no remaining function pairs to process (“No”
path out of decision step 755), then processor 205 calculates
a block-size, in-degree and out-degree spectra ratios (step
760-770). These ratios are calculated by dividing a total
number of respective correlation coefficients above a thresh-
old by a total number of correlation coefficients. The thresh-
old used for the calculation of the three ratios can be the
same or different. Processor 205 then selects the maximum
ratio of the unique spectra ratios (step 775) and generates a
comparison score based on the selected maximum ratio (step
780). The generated comparison score is then used by
processor 205 to identify infringement of one of the com-
piled computer binaries (step 785). The comparison score is
generated by comparing the selected maximum ratio of the
unique spectra ratios to a threshold, and accordingly
infringement is identified when the selected maximum ratio
is above the threshold. The threshold can be set, for example,
by training the system using known data and a particular
compiled computer binary for which it is to be determined
whether there are other compiled computer binaries infring-
ing the particular compiled computer binary. This training
identifies commonalities between the known data and the
particular compiled computer binary so that the threshold
can be set to avoid false positives indicating infringement
due to code commonly used across different pieces of
software that would not be an indicator of infringement.

When, based on the generated comparison score, there is
sufficient similarity between the compiled computer binaries
or portions of the compiled computer binaries, processor
205 can notify the owner of one of the compiled computer
binaries of the potential infringement via output 220 (step
790). The notification can include details of the regions of
the allegedly infringing computer binary that is most likely
involved in the infringement.

The collection of compiled computer binaries, fingerprint
generation, and fingerprint matching can be automated and
scheduled to execute using any type of task scheduling
technique. Thus, the present invention provides a particu-
larly cost- and time-effective way to discover, remediate,
and enforce intellectual property rights, and accordingly acts
as a deterrence against the theft of software code. Further, by
identifying infringement based on the functions contained
within compiled computer binaries, the present invention
can identify an entirely copied compiled computer binary, as
well as copied portions of a compiled computer binary.

FIG. 8 is a flow diagram of an exemplary fingerprinting
technique 800 in accordance with another embodiment of
the present invention, which is performed using the system
of FIG. 2. Initially, processor 205 receives a binary via input
215 and/or memory 210 (step 805) and disassembles the
binary in order to generate a control flow graph for each
function in the binary (step 810). Processor 205 selects a
control flow graph for a first function (step 815), reverses all
of'the edges of the selected control flow graph and performs
a block rank algorithm on the selected control flow graph in
order to generate a block rank score for each block in the
control flow graph of the selected function (step 820). The
block rank algorithm is similar to the PageRank algorithm
disclosed in the article “The PageRank Citation Ranking:
Bringing Order to the Web” by L. Page et al. 1999, the entire
disclosure of which is herein expressly incorporated by
reference. Those skilled in the art will recognize that the
PageRank algorithm is a type of Eigenvector centrality

US 9,459,861 B1

7

algorithm that assigns a value corresponding to the relative
importance of each block in a graph. In PageRank the blocks
are web pages and the relative importance is based on the
number of forward links from the page, as well as the
relative importance of the web pages associated with these
forward links. In the present invention the blocks within a
function and the relative importance of the blocks is based
on the number of incoming edges (because the edges are
reversed), as well as the relative importance of the blocks
from which the incoming edges originate.

The application of block rank scoring to an exemplary,
simplified function is illustrated in FIG. 9, which illustrates
a function with the edges reversed going from the end of the
function to the start. In this exemplary function block 906
has a block rank score of 3 because block 916 has only a
single forward path and therefore contributes its entire block
rank score of 2 and block 914 has a block rank score of 2,
which is divided between blocks 904 and 906. Block 904 has
forward links from blocks 908, 910, and 912, each of which
have only a single forward path and each having a block
rank score of 1, and a forward link from block 914, which
splits its block rank score between blocks 904 and 906.
Thus, block 904 is assigned a value of 4. Finally, block 902
is assigned a block rank score of 7 because blocks 904 and
906 only have a single forward path, and therefore contrib-
ute their entire respective block rank scores of 4 and 3.

Once a relative importance value is assigned to each block
within the control flow graph for the first function, a path is
constructed starting from the function start based on the
block rank score. Specifically, processor 205 begins path
construction at the function start (step 825) and identifies the
blocks connected to the function start in the control flow
graph and the block rank score for each connected block
(step 830). Processor 205 then constructs the path to a next
block by selecting the one of the identified blocks having a
highest block rank score (step 835). When there is more than
one of the identified blocks having the same highest block
rank score then the block with the larger number of instruc-
tions is selected as the next block. If there is still a tie, an
arbitrary block is chosen among the blocks having the same
highest block rank score.

For each selected block in the path processor 205 saves a
3-tuple in memory 210 as an ordered list based on the order
of the blocks in the path (step 840). The 3-tuple comprises
the number of instructions in the block, the in-degree of the
block, and the out-degree of the block. Next processor 205
determines whether there are any out paths from the selected
block (step 845). When processor determines there are out
paths (“Yes” path out of decision step 845) then processor
205 uses the block rank score to select a next connected
block (step 835).

The path construction continues until a block is reached
that does not have any out paths (“No” path out of decision
step 845). Once the end block is reached processor 205
generates the fingerprint of the selected function by storing
the ordered list of 3-tuples in memory 210 along with the
control flow graph block count, the control flow graph edge
count, and the function call count (step 850). Each element
of the ordered list corresponds to each block along the
chosen characteristic path (or the Markov chain referred to
above).

Returning to the exemplary function of FIG. 9, the path
would be constructed from block 902 to block 904 because
block 904 has a higher block rank value than block 906. The
path would then continue from block 904 to block 914
because block 914 has the highest block rank value of any
of the outgoing paths from block 904. Thus, it should be

10

15

20

25

30

35

40

45

55

60

65

8

appreciated that the ordered list does not include all blocks
of the function, only those along the path. Accordingly, this
reduces the amount of information required to generate a
fingerprint, and in turn improves the overall functioning of
a computer executing this method because the overall pro-
cessing power is reduced.

Returning to FIG. 8, next processor 205 determines
whether there are any remaining functions in the binary that
have not yet been processed (step 855). If processor 205
determines there are any remaining functions (“Yes” path
out of decision step 855), processor 205 selects a next
function (step 860) and the function is processed in the same
manner as the first selected function (steps 820-850). When
processor 205 has processed all functions of the binary
(“No” path out of decision step 855) the fingerprints of each
of the functions are saved in memory 210 along with an
association with the received binary from which the func-
tions originated (step 865).

Although FIG. 8 involves fingerprinting functions of a
single set of code it should be recognized that this can be
performed on additional sets of code so that the fingerprint
database is populated with functions from more than one set
of'code. For example, a software developer could fingerprint
all of its code so that the database can later be used to
identify copied functions from third-party code. Similarly,
an entity can offer a service in which code from one or more
software developers is collected, for example, by a web
spider as described above, is stored in the database and a
software developer can bring its code to the entity to
determine whether the database includes any code contain-
ing copied functions.

FIGS. 10A and 10B are a flow diagrams of an exemplary
process 1000 for matching fingerprints in accordance with
another embodiment of the present invention, which is
performed using the system of FIG. 2. Because the database
of fingerprinted functions is generated using disassembled
complied binaries the fingerprinted functions may contain
one or more blocks that are added by the complier during
compilation of the source code. Accordingly, a function may
have been copied from another function even though two
functions are not identical, i.e., there may not be an exact
correspondence between the blocks and/or paths of one
function and those of another function. These types of
discrepancies are addressed in the method of FIGS. 10A and
10B, and thus the fingerprint matching of the present inven-
tion can identify functions containing copied code even
when the functions are not identical.

Accordingly, when one desires to determine whether a
function has been copied, processor 205 receives the func-
tion as a query function (step 1002) and fingerprints it (step
1004) using the method detailed above in connection with
FIG. 8. Next processor 205 determines a neighborhood size
for identifying potentially copied functions (step 1006)
using the following formula:

Neighborhood_Size=Eclidean_distance([0,0,0], coor-
dinate_triple_of query_function)*0.20.

where coordinate_triple_of_query_function comprises
the (1) control flow graph block count, (2) control flow
graph edge count, and (3) function call count of the
query function.

The value 0.20 is a weighting factor controlling the size
of the neighborhood, which in this instance is a 20%
weighting factor. It should be recognized that other weight-
ing factors could be employed, as well as no weighting
factor, depending upon the query function. The weighting
factor adjustment depends on the density of the distribution

US 9,459,861 B1

9

of the measurements of the function features, specifically,
how many other functions within the call graph have similar
feature metrics necessitating an expansion or contraction of
the definition of a function’s neighborhood.

Now that the search neighborhood has been defined,
processor 205 can search a database of fingerprints, which
can be stored in memory 210, to identify those within the
search neighborhood and then select the fingerprint of a first
function in the neighborhood (step 1008). Processor then
initiates a comparison of the selected neighborhood finger-
print corresponding 3-tuple to the 3-tuple of the fingerprint
of the query function (step 1010). Processor 205 begins the
comparison by independently normalizing each dimension
of the query fingerprint and the selected neighborhood
fingerprint by dividing the distance from the mean for each
dimension of all fingerprints in the neighborhood by the
standard deviation for each dimension of all fingerprints in
the neighborhood (step 1012).

Processor 205 calculates a similarity score between the
query fingerprint and the selected neighborhood fingerprint
using the Needleman-Wunsch algorithm (step 1014), which
is described in the article “A general method applicable to
the search for similarities in the amino acid sequence of two
proteins” S. Needleman et al., Journal of Molecular Biology
48 (3): 443-53. doi:10.1016/0022-2836(70)90057-4. PMID
5420325, the entire disclosure of which is herein expressly
incorporated by reference.

The details of the application of the Needleman-Wunsch
algorithm in the present invention are illustrated in FIG.
10B, which will be described in connection with FIGS.
11A-11C. First, processor 205 generates a two-dimensional
array AxB, of all possible pair combinations of 3-tuples
between the query fingerprint and the selected neighborhood
fingerprint (step 1016), where, starting from the beginning
of the ordered list of 3-tuples, A; represents jth block in the
ordered list for the selected neighborhood function the and
B, represents the ith block in the ordered list for the query
function. The assignment of the neighborhood functionto A,,
and the query function to B, is not critical and the assign-
ments can be reversed. Each cell of the array is assigned a
value of “1” if there is a match between the 3-tuples for the
query fingerprint and the selected neighborhood fingerprint
and a “0” if there is no match. The array allows a represen-
tation of every possible comparison between the blocks of
the two fingerprints by generating pathways through the
array and the pathway having the sum of assigned cell values
that is the largest is selected as the similarity score.

Next, processor 205 initializes the indices 1 and j to
correspond to the last cell in the array (step 1018), which in
this example is setting i=y and j=z. Processor 205 then
performs a successive summation procedure according to
steps 1020-1028, in a row-by-row manner starting from the
right side of each row. Specifically, for a cell under evalu-
ation at i=y and j=z, processor 205 adds its value to the
maximum value of the cells having indices u=y-1 and/or
j=z-1 (step 1020). For example, referring now to FIGS. 11A
and 11B, assume that the highlighted cell at indices 4, 4 is
under evaluation and that it was already assigned a value of
1 due to a match between 3-tuples of the query fingerprint
and the selected neighborhood fingerprint. In FIG. 11A the
cells in row 4 to the right of the cell at indices 4, 4 have
already been subject to the successive summation, as well as
all of the cells in rows 1-3. The cells having an index of 3
(i.e., 4-1) are evaluated to identify the maximum value,
which in this example would be the value of 2 in the cell at
3, 3. Accordingly, as illustrated in FIG. 11B, the value of 2

10

15

20

25

30

35

40

45

50

55

60

65

10

is added to the value of 1 already at cell 4, 4, and thus the
successive summation results in a value of 3 at index 4, 4.

Returning to FIG. 10B, after adding the value to a cell,
processor 205 determines whether the evaluated cell is the
last cell in a row (step 1022). If not (“No” path out of
decision step 1022), processor 205 increments the column
index by one (step 1024) and the next cell in the row is
subjected to the successive summation (step 1020). If pro-
cessor 205 determines that the evaluated cell is the last cell
of the row (“Yes” path out of decision step 1022), then
processor 205 determines whether the evaluated cell is the
last cell of all of the rows (step 1026). If processor 205
determines there are remaining rows (“No” path of decision
step 1026), then processor 205 increments the row index by
one and resets the column index to the most right-hand
column index (step 1028) and processor 205 continues the
successive summation in the first column of the next row
(step 1020). The result of the successive summation across
all cells is illustrated in FIG. 11C.

If processor 205 determines that all cells have been
evaluated (“Yes” path out of decision step 1026), then
processor 205 selects, based on the Manhattan distance
between each of the 3-tuples, a pathway having the largest
sum of the assigned cell values, less any gap penalty, as the
maximum match pathway (step 1030). In an exemplary
embodiment the gap penalty is 3. However, it will be
recognized that other gap penalties can be used. The value
in each cell in the outer row or outer column contains a value
of the maximum number of matches that can be obtained by
starting a pathway at that cell, and the cell in the outer row
and column are evaluated identify the cell having the largest
value, which is where the maximum match pathway begins.
The maximum match pathway then continues from this
outer cell to the cell in each successive row or column
having a largest value. Referring again to FIG. 11C, the
largest number in the outer row or column is at index 6, 6,
which has a value of 4. From index 6, 6 the pathway
continues to the cell having the maximum value in each row
of'each successive column, which is illustrated by the arrows
in the figure.

Returning to FIG. 10A, once processor 205 identifies the
maximum match pathway (step 1030), then processor 205
uses the sum of all of the cells along the pathway as the
similarity score, which is added to a similarity score ranking
list, which is ordered by score from closest to further (step
1034). If processor 205 determines there are functions in the
neighborhood that have not yet been compared (“Yes” path
out of decision step 1034), then processor 205 selects the
next neighborhood function (step 1036) and subjects it to the
comparison (step 1010). If processor 205 determines that all
neighborhood functions have been subject to the comparison
(“No” path out of decision step 1034), then processor 205
identifies any function having a similarity score greater than
or equal to a threshold similarity score as being a function
having code copied by the query function (step 1038). The
threshold can be set, for example, by training the system
using known data and a particular compiled computer binary
for which it is to be determined whether there are other
compiled computer binaries infringing the particular com-
piled computer binary. This training identifies commonali-
ties between the known data and the particular compiled
computer binary so that the threshold can be set to avoid
false positives indicating infringement due to code com-
monly used across different pieces of software that would
not be an indicator of infringement.

Although FIGS. 10A and 10B involve a comparison
between the query function and a plurality of functions

US 9,459,861 B1

11

stored in a database of fingerprints, the comparison tech-
nique can also be employed to compare two functions to
identify whether one contains copied code of the other. In
this case the selection of the neighborhood size (step 1006)
could be eliminated along with the iteration through the
functions in the neighborhood (the return path from step
1036 to 1010). Alternatively, the neighborhood size (step
1006) could be maintained as an initial threshold to quickly
eliminate the possibility of copying when one of the finger-
prints is outside of the neighborhood. In this case the
iteration through functions in the neighborhood would still
be eliminated because the comparison involves only two
functions.

The fingerprint generation and matching techniques of the
present invention advantageously improve the operation of
the computer performing these techniques by reducing the
processing load required to fingerprint code and compare
fingerprints.

Although exemplary embodiments have been described
above as generating fingerprints using compiled computer
binaries, the present invention is equally applicable to com-
puter source code, byte code, and the like.

The foregoing disclosure has been set forth merely to
illustrate the invention and is not intended to be limiting.
Since modifications of the disclosed embodiments incorpo-
rating the spirit and substance of the invention may occur to
persons skilled in the art, the invention should be construed
to include everything within the scope of the appended
claims and equivalents thereof.

What is claimed is:

1. A method comprising:

receiving, by a computer, a first compiled computer

binary;

generating, by the computer, a first fingerprint of a first

function of the first compiled computer binary by

generating a block rank score for each block in the first
function;

generating a path of blocks of the first function based
on the block rank score of each block;

generating the first fingerprint using the generated path
of blocks of the first function;

receiving, by the computer, a second compiled computer

binary;

generating, by the computer, a second fingerprint of a

second function of the second compiled computer

binary by

generating a block rank score for each block in the
second function;

generating a path of blocks of the second function
based on the block rank score of each block;

generating the second fingerprint using the generated
path of blocks of the second function;

comparing, by the computer, the first fingerprint of the

first function with the second fingerprint of the second
function; and

determining, by the computer, whether the second func-

tion includes at least some of code from the first
function based on the comparison, wherein the genera-
tion of a block rank score for each block in the first and
second functions involves reversing all edges in a
control flow graph for the first and second functions
and assigning a block rank score to each block based on
block rank scores of blocks having a forward path to the
each block.

2. The method of claim 1, wherein the generation of the
path of blocks for the first and second functions comprises:

starting from a first block in the first and second functions;

25

30

40

45

55

12

selecting a next block in the path based on the block rank

score of possible next blocks; and

storing, for each block in an ordered list based on a

position within the path, a 3-tuple comprising a number
of instructions in the block, an in-degree of the block,
and an out-degree of the block.

3. The method of claim 2, wherein the path of blocks of
the first function includes less than all blocks of the first
function and the ordered list for the first function only
includes 3-tuples for blocks in the path of blocks for the first
function.

4. The method of claim 1, wherein the first and second
complied computer binaries are complied using different
compilers, one of the different compilers adds at least one
block to the first or second function that is not present in the
other of the first and second functions, and a match is
determined between the first and second functions even
though the added at least one block is not present in both the
first and second functions.

5. The method of claim 1, wherein the comparison of the
first and second fingerprints involves comparing 3-tuples in
a first ordered list for the first function with 3-tuples in a
second ordered list for the second function, wherein the
3-tuples in the first and second ordered lists comprise a
number of instructions in the block, an in-degree of the
block, and an out-degree of the block.

6. The method of claim 5, wherein the comparison of the
3-tuples in the first and second ordered lists comprises:

generating a two-dimensional array of all possible pair

combinations between the 3-tuples in the first and
second ordered lists;

generating a maximum match pathway through the two-

dimensional array.

7. The method of claim 1, wherein a plurality of functions
are generated from a plurality of received complied com-
puter binaries, and each of the plurality of functions is
fingerprinted and compared to one of the first and second
fingerprints to determine whether each of the plurality of
functions matches the one of the first and second finger-
prints.

8. A method comprising:

receiving, by a computer, a plurality of complied com-

puter binaries;

generating, by the computer, a plurality of fingerprints for

a corresponding plurality of functions in each of the
plurality of compiled computer binaries;

storing, by the computer, the plurality of fingerprints in a

database;

receiving, by the computer, a query function;

generating, by the computer, a query fingerprint for the

query function by

generating a block rank score for each block in the
query function, wherein the generation of a block
rank score for each block in the query function
involves reversing all edges in a control flow graph
for the query function and assigning a block rank
score to each block based on block rank scores of
blocks having a forward path to the each block;

generating a path of blocks of the query function based
on the block rank score of each block;

generating the query fingerprint using the generated
path of blocks of the query function;

comparing, by the computer, the query fingerprint to each

of the plurality of fingerprints; and

determining, by the computer, that the query fingerprint

contains copied code from one of the plurality of
fingerprints based on the comparison.

US 9,459,861 B1

13

9. The method of claim 8, wherein the generation of the
path of blocks for the query function comprises:

starting from a first block in the query function;

selecting a next block in the path based on the block rank

score of possible next blocks; and

storing, for each block in an ordered list based on a

position within the path, a 3-tuple comprising a number
of instructions in the block, an in-degree of the block,
and an out-degree of the block.

10. The method of claim 9, wherein the path of blocks of
the query function includes less than all blocks of the query
function and the ordered list for the query function only
includes 3-tuples for blocks in the path of blocks for the
query function.

11. The method of claim 8, wherein the comparison of the
query fingerprint with the plurality of fingerprints involves
comparing 3-tuples in a first ordered list for the query
function with 3-tuples in ordered lists for each of the
plurality of functions, wherein the 3-tuples in the first
ordered list and in the ordered lists for each of the plurality
of functions comprise a number of instructions in the block,
an in-degree of the block, and an out-degree of the block.

12. The method of claim 11, wherein the comparison of
the 3-tuples in the first and second ordered lists comprises:

generating a two-dimensional array of all possible pair

combinations between the 3-tuples in the first and
second ordered lists;

generating a maximum match pathway through the two-

dimensional array.

13. A method comprising:

receiving, by a computer, a first compiled computer

binary;

generating, by the computer, a first fingerprint of a first

function of the first compiled computer binary by
generating a block rank score for each block in the first
function, wherein the generation of a block rank score
for each block in the first function involves reversing
all edges in a control flow graph for the first function

25

30

35

14

and assigning a block rank score to each block based on
block rank scores of blocks having a forward path to the
each block;

generating a path of blocks of the first function based on

the block rank score of each block; and

generating the first fingerprint using the generated path of

blocks of the first function;

comparing, by the computer, the first fingerprint of the

first function with a second fingerprint of a second
function by
comparing 3-tuples in a first ordered list for the first
function with 3-tuples in a second ordered list for the
second function by
generating a two-dimensional array of all possible
pair combinations between the 3-tuples in the first
and second ordered lists;
generating a maximum match pathway through the
two-dimensional array, wherein the 3-tuples in the
first and second ordered lists comprise a number
of instructions in the block, an in-degree of the
block, and an out-degree of the block; and
determining, by the computer, whether the second func-
tion includes at least some of code from the first
function based on the comparison.

14. The method of claim 13, wherein the generation of the
path of blocks for the first function comprises:

starting from a first block in the first function;

selecting a next block in the path based on the block rank

score of possible next blocks; and

storing, for each block, a 3-tuple for the block in an

ordered list based on a position of the block within the
path.

15. The method of claim 14, wherein the path of blocks
for the first function includes less than all blocks of the first
function and the ordered list for the query function only
includes 3-tuples for blocks in the path of blocks for the
query function.

